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ABSTRACT
This work presents a novel user interface applying 3D visual-
ization to understand complex group activities from multiple
first-person videos. The proposed interface is designed to
assist video viewers to easily understand the collaborative re-
lationships of group activity based on where the individual
worker is located in a workspace and how multiple work-
ers are positioned to one another during the group activity.
More specifically, the interface not only shows all recorded
first-person videos but also visualizes the 3D position and
orientation of each view point (i.e., the 3D position of each
worker wearing a head-mounted camera) with a reconstructed
3D model of the workspace. Our user study confirms that the
3D visualization helps video viewers to understand geomet-
ric information of a worker and collaborative relationships of
group activity easily and accurately.
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INTRODUCTION
In this work, we design a user interface for understanding
group activities from multiple first-person points-of-view
videos recorded by wearable cameras. We consider a scenario
where multiple workers in the shared workspace collaborate to
accomplish complex group tasks such as in relocation of house,
rescue, or construction. To improve the overall efficiency or
quality of group performance, it is important to review and
assess the task. To this end, we exploit the case where all the
workers are equipped with a wearable camera to capture their
first-person videos during the task.

The use of wearable cameras is advantageous for recording
what workers looked at and how they used their hands. These
cues would be helpful for understanding certain group activ-
ities but are difficult to observe by using a fixed camera in
the workspace. Recent work on HCI has tried to make use
of wearable cameras for lifelogging [3, 9, 8, 12] and remote
assistance [6, 7, 11].

However, the recorded videos from the wearable cameras can-
not always allow observers to grasp geometric relationships
among the workers. Each first-person video only captures
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Figure 1. The proposed interface shows (A1-3) tiled multiple first-person
videos, (B) the 3D visualization of a reconstructed workspace, and (C)
3D poses and trajectories of workers. Workers are equipped with wear-
able cameras to record first-person points-of-view videos.

limited parts of the workspace, and the visible parts can dras-
tically change when the workers move. As a result, video
observers face difficulties to track the positional information
in the shared workspace, including not only absolute locations
of each worker but also positional relationship between mul-
tiple workers. It is also difficult to see group performance
regarding who is working with whom.

In order to address the aforementioned limitations, we develop
a novel interface for browsing multiple first-person videos of
group work effectively using computer vision techniques. As
shown in Figure 1, in addition to (A1-3) first-person videos
of multiple workers displayed in a tiled fashion, our inter-
face is featured by the workspace-view widget consisting
of (B) reconstructed 3D geometry of the workspace and (C)
3D poses and trajectories of wearable cameras. In our user
study, we asked participants to browse first-person videos of
several group tasks, and confirmed the effectiveness of the
proposed interface to assist the understanding of geometric
and collaborative relationships of workers.

RELATED WORK
Many user interfaces have been developed for browsing multi-
ple videos recorded by various types of cameras. For multiple
fixed surveillance cameras, prior works have often included a
map of the workspace obtained from a fisheye lens [4], a pre-
built 3D model [16], reconstructed 3D models from multiple
video streams [19], and crowd-sourcing [17]. Other studies [2,
13] have explored smoothing techniques of video transitions
for both moving and fixed cameras. In comparison, we focus
especially on browsing multiple first-person videos captured
by wearable cameras. Advantages of our setting are to capture
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one’s field of view up close and to reduce the cost of installing
fixed cameras to each new workspace.

Recent work has also explored visualizing multiple first-person
videos. In [10], multiple first-person videos are simply tiled
on head-mounted displays to share work in progress among
camera wearers for remote collaboration. In [15], 3D poses
of multiple wearable cameras are visualized to discover joint
attention of camera wearers. Kono et al.have developed a
view-sharing system that allows camera wearers to share po-
sition information among the wearers [14]. To extend the
visualization techniques for multiple first-person videos [10,
15, 14], we propose to visualize 3D geometry of a workspace,
in addition to poses and trajectories of wearable cameras to
assist in understanding of group activities.

INTERFACE DESIGN
This section introduces the design of an interface for assisting
an observer to review video-recorded collaborative activities
using multiple wearable cameras. Specifically, we consider a
scenario where multiple workers share their workspace and
collaborate with each other to accomplish a complex task such
as relocating house, rescue, and/or construction.

One straightforward approach is to tile and present multiple
videos at a time as shown in [10, 16]. In this work, we refer
to this design as a baseline interface. The baseline interface,
however, becomes problematic in understanding geometric
and collaborative relationships of workers from multiple first-
person videos. Since such videos are recorded with multiple
moving wearable cameras, observers can easily lose their
awareness regarding the position of each worker and the ge-
ometric and collaborative relationships of multiple workers.
Figure 2 shows some examples. (1) is a first-person video of
a worker walking forward. Because this video captures only
a part of an entire workspace, it is hard to grasp the moving
path of the worker. In (2), even though we are able to see three
workers being present in the workspace, it is hard to capture
their formation as they frequently look down or away. More-
over, the video in (3) shows that five workers are co-drawing
on paper while forming some groups around a table. Since
they mostly tilted their heads forward, it is difficult to see their
group formation accurately.

To address the limitations in capturing spatio-temporal in-
formation from multiple first-person videos, we propose to
visualize the group activity with geometric information of
wearable cameras and the workspace. Our proposed interface
specifically offers a workspace-view which visualizes the po-
sitions, poses, and pathways of wearable cameras in the 3D
workspace environment, as shown in Figure 1. The visualiza-
tion of the workspace view is reconstructed by using computer
vision techniques for RGB images of cameras. The proposed
interface combines the workspace-view with tiled first-person
videos.

The proposed interface is designed to assist observers in un-
derstanding the following four components:

• Workspace geometry from each worker’s first-person
point-of-view
With the 3D visualization of the entire workspace (Figure 1

Figure 2. Difficulties of understanding geometric and collaborative re-
lationships of workers from multiple first-person videos: (1)location
changes of a single worker, (2)formations and (3)groups of multiple
workers.

(B)), we expect that observers can easily and accurately un-
derstand the positional relationship of workers and objects
captured in each first-person video by seeing the 3D models
of the workspace.

• Linkage of each camera position to each worker’s posi-
tion
By visualizing each camera position with a fine color and an
ID label (Figure 1 (C)), we expect that observers can easily
link each camera position to the position of each worker.
We refer this visualization from [21]. This can be a direct
clue of geometric relationships of multiple workers. The
height of each camera is also visualized to assist observers
to grasp activities of each worker (e.g., standing or sitting).

• Viewing direction of each first-person video and the
head orientation of each worker
We assume that the visualization of each camera orienta-
tion helps observers to grasp the viewing direction of each
first-person video. This indicates head orientation of each
worker that can be a beneficial clue to see the workstation
(e.g., desk and workbench) of a worker in the 3D environ-
ment. Head orientations of workers also can be useful to
understand a collaborative group of workers.

• Each worker’s moving trajectory
We also expect that the visualization of each camera trajec-
tory assists observers to understand the moving pathway of
each worker. This visualization can also give direct clues to
know past and future positions of workers.

IMPLEMENTATION
The system implementation can be divided into two stages:
reconstructing and visualizing workspace structures and cam-
era movements. For the reconstruction process, the system
uses video streams from wearable cameras and pictures of a
physical workspace.
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Figure 3. Pipeline of reconstructing workspace and camera paths

Reconstructing geometry of workspace and workers
Figure 3 shows the pipeline of reconstructing a workspace and
camera paths from a collection of wearable cameras. In this
study, we adopted a computer vision-based 3D reconstruction
framework: VisualSFM [23] that offered a pipeline of func-
tions using a set of scene images as an input to compute its 3D
point cloud as an output (i.e., structure from motion [22], bun-
dle adjustment [24], and patch-based multi-view stereo [5]).
We also used Point Cloud Library [18] to filter out noisy points
and reduce data size of the point cloud. In order to estimate
the accurate 3D model, images of a workspace were taken sep-
arately before recording group activities. Images with heavy
motion blur were detected by computing optical flows and
omitted from the reconstruction process.

Once the workspace structure is reconstructed, the system runs
a next reconstruction process to obtain geometric information
of each camera from a video stream. To obtain the geometric
information, the system corresponds feature points of each
video image to feature points of the workspace using the SIFT
feature. In order to reduce a computational cost, this matching
was made for every twenty frames. We also partially matched
image frames among wearable cameras to obtain more feature
correspondences among images. Specifically, given a certain
image frame, we evaluated matches against every four frames
of the consecutive forty-one frames around that frame for all
the cameras including its own camera.

Implementing the proposed interface
As depicted in Figure 1, the 3D structure of the workspace is
presented on the 2D plane seen from the high oblique point of
view (B). We refer to this projected view of workspace struc-
ture as the workspace-view. We set the initial viewing angle
of the workspace structure as 45 degrees. We allow observers
to resize and rotate the structure around the vertical axis.We
then visualize camera positions by a colored circle with an ID
(C). We also visualize camera heights with a cylinder. Camera
orientations and trajectories are represented by an arrow and a
line, respectively. We set the initial viewing length of forward
and backward trajectories as 5 seconds.

In addition, also as shown in Figure 1 (A and B), camera
locations and corresponding first-person videos are associated
with a border color of the video window. For instance, the
video with a green border is captured by the green camera

in the workspace view. We also implemented some basic
playback-control tools such as a seek-bar, a play-and-pause
button, fast-forward and fast-backward buttons and a reset
button.

USER STUDY
We conducted a series of user study to investigate whether and
how the proposed interface for browsing group activities of
multiple workers assists in understanding the geometric and
collaborative relationships. We implemented a simple video
browser as a baseline interface that tiles and shows multiple
first-person videos. We assumed that the proposed interface
with the workspace view significantly supports understanding
geometric information in group activities from first-person
videos compared to the baseline interface.

To focus on the investigation of how our proposed workspace-
view visualization assists in understanding geometric infor-
mation, we tried to reduce the confounding factors of the
observers’ habits and interests to use the interface. In our
preliminary study, we observed that interface manipulation
behaviors drastically varied depending on the observers and
changed the usability outcomes. Therefore, we took screen-
casts of the interfaces and presented them to the observers,
allowing them to play the casts only once. In the study, we
asked participants in the role of observers about several ques-
tions for understanding group activities. We designed three
tasks to see the effectiveness of the proposed workspace-view
that we assumed to give important information of group activ-
ities.

Dataset
Prior to the user study, our dataset was collected by record-
ing eight sequences of group activity performed by three or
five workers equipped with head-mounted wearable cameras.
Specifically, the group activities involve: (A) box shipping
and transportation, (B) walking around posters, (C) collecting,
organizing, and delivering magazines and boxes, (D) drinking
around a table, (E) co-drawing on one paper, (F) box trans-
portation, (G) cleaning up connected rooms and (H) block
composition. Each dataset was recorded at more than one of
the five different locations such as foyers or connected office
rooms. The duration of each dataset was 32–632 seconds. In
this study, we took a screencast of the proposed interface that
played each dataset, and clipped the screencast into multiple
experimental videos.

Tasks
In this experiment, we assigned three tasks to investigate
whether and how the proposed view would assist observers
to understand the movement of each worker in the workspace
and group formation of workers easily and accurately.

TASK 1: worker’s movement
We asked observers about a given worker’s movement during
the time when the screencast is in play. As shown in the left
of Figure 4 (b), observers draw a line by hand on a canvas,
on which a layout of the workspace is also displayed. The
duration of each screencast is about twelve seconds.
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Figure 4. Experimental user interface: (a) video for experiment, (b) can-
vas for drawing answers with answer examples of three experimental
tasks and (c) play-button are placed on 24" monitor

TASK 2: three workers’ formation
We asked observers about a formation of given three workers
at the end of the screencast. One of the three workers is already
displayed on the canvas. Observers answer positions and IDs
of the other two workers. Screencasts have different variations
for whether the formation change is included during the play.
The duration of each screencast is about thirty seconds.

TASK 3: a group of workers
We asked observers to detect two groups from five workers.
For instance, when there are five workers forming two groups
which are made by two and three workers respectively, ob-
servers draw IDs of all the workers who are in the same group
as a given worker on the canvas.

Varying screencasts are provided as to whether the group has
been formed from the beginning. The duration of each screen-
cast is about thirty seconds.

Experimental Setting
We recruited 12 participants as observers for the user study. To
counterbalance, we assigned different order of presenting two
visualization methods and two screencasts to each observer;
that is, 3 observers were assigned to each combination. Our
experimental settings are illustrated in Figure 4. In all the
tasks, the observers were asked to draw their answers on a
canvas with a floor map (Figure 4(b)). Each observer browsed
screencasts with both the baseline and the proposed visualiza-
tions alternately for each task. We gave the observers tutorials
prior to performing each task. In the tutorial session, we asked
observers to perform a practice task to get used to the follow-
ing main task. Note that datasets used for the tutorial were
different from the datasets for the main tasks.

Evaluations
Objective Evaluation
We manually scored accuracy of tasks (0.0 – 1.0) according
to the following criteria: starting point, end point and middle
path of the movement (Task 1); positions of two workers and
the ID order of three workers (Task 2); and group member
IDs and their location (Task 3). Note that positional accuracy
is scored based on the grid lines overlaid on the canvas. For
example, in TASK1, we judged that an end point is correct
when the point is inside the correct grid or its adjacent grids.

Figure 5. Accuracy of Task and Ease of Task. (†, *, **) under each graph
represent each significance level (p < .1, .05, .01).

Subjective Evaluation
In each task, we asked observers to score the ease of task
according to the seven scales of 1–7 (1: difficult, 7: easy). At
the end of the experiment, we also asked observers to score
the ease of understanding of the proposed visualizations and
the 3D-model of the workspace according to the seven grades
respectively. After the experiment, we took interview sessions
to see their experience during tasks. We focused on benefits
and difficulties in use of the proposed interface.

RESULT

Three Tasks
Figure 5 shows average accuracy (i.e., task scores normalized
with a range of [0, 1]) and average ease levels of all tasks.
To evaluate limited numbers of Likert score data, we used a
non-parametric method of Wilcoxon signed-rank test. As a
result, in TASK 1, we observed significant increase in both
accuracy of task (p < .1) and ease of task (p < .01) in the
proposed compared to the baseline. In TASK 2, we observed
significant increase in both accuracy of task (p < .01) and ease
of task (p < .01). We also observed significant increase in
ease of task (p < .01) for TASK 3.

End Questions
Observers answered two questions at the end of the experi-
ment: (EQ1) how easy was it to understand the workspace-
view visualization, and (EQ2) how easy was it to understand
the workspace geometry by seeing the 3D model from the pre-
sented viewpoint. The average 7 graded scores are 6.2±0.7
and 6.4±0.8 respectively.

Summary of Interviews
We received positive comments about the proposed visual-
ization of camera position, orientation and pathways respec-
tively. Camera positions helped identifying the position of
each worker and their geometric relationship/collaboration.
Camera orientations also assisted in grasping workers’ inter-
ests, moving direction, and working space. Visualized camera
pathways gave cues to estimate future positions of workers.
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In contrast, we also obtained negative comments about the
proposed interface. Observers mainly reported estimation er-
rors of reconstructing camera positions and orientations that
adversely affected their experience of using the proposed vi-
sualization. Few observers said that the workspace-view was
not effective when there was no movement of workers.

DISCUSSION
We conclude that the proposed workspace-view effectively as-
sists observers to understand geometric relationships of work-
ers easily and accurately. As shown in Figure 5, we confirmed
that the accuracy and ease of two tasks about grasping the
movement of each worker (TASK1) and the formation of
multiple workers (TASK2) were improved by the proposed
interface. In the proposed interface, the observers could use
the workspace-view to become aware of positions, directions
and pathways of workers directly.

We observed that workspace-view visualization assists ob-
servers to easily grasp groups formed by multiple workers.
We also confirmed that the subjective ease of task was signif-
icantly improved in TASK3. Though solving the task itself
was not so difficult enough to yield the difference between
the baseline and the proposed, it seems that making use of the
proposed visualization instead of comparing multiple videos
significantly improved the subjective ease of task. We also
observed that the accuracy of task was improved. In the pro-
posed condition, observers referred the workspace-view to see
camera positions. It is assumed that observers could easily
find the group candidates by seeing the closely positioned vi-
sualizations of cameras. Camera pathways were also assumed
to be the clue for detecting group candidates of workers, who
were apparently moving in collaboration. Camera orienta-
tions served as clues for identifying the co-working place
and determining whether or not the workers of interest were
collaborating.

As a limitation of the work, observers reported estimation er-
rors of camera positions. They said that adversely affected the
task performance. In our implementation, we used a structure-
from-motion (SfM) technique to reconstruct the cameras and
workspace facilities. However, SfM often fails to reconstruct
3d geometry from video frames when there are few point cor-
respondences between the frames. To overcome this limitation,
we plan to improve a pipeline of 3D reconstruction by using
the state-of-the-art 3D reconstruction methods [1, 20].

CONCLUSION
This work introduced a novel user interface for browsing group
first-person videos with 3D visualization of workspace and
camera positions. The interface is designed to assist under-
standing group activity performed by multiple workers in a
physical workspace. We developed the prototype interface for
evaluating effects of the proposed 3D visualization. Through
the user study, we confirmed that the proposed visualizations
assisted observers to understand geometric and collaborative
relationships of workers.
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